Answer:
r = -40
Step-by-step explanation:
1. Move constants to the other side of the equation
r = 16/-.04
2. Simplify (by calculator)
You can use a calculator and plug in 16/-.04
r = -40
2. Simplify (by fraction)
You can turn -.4 into a fraction.
-.04 = - 4/10
r = 16/-(4/10)
r = 16*10/-4
r = -40
The variables x and y are in a proportional
relationship. When x is 1/4, y is 6. If the
equation y=kx represents the relationship
between xand y, where k is the constant of
proportionality, what is the value of k?
Answer:
K =24
Step-by-step explanation:
\(x = 1 \div 4 \\ y = 6 \\ therefore \: since \: y = kx \\ 6 = k1 \div 4 \\ divide \: both \: sides \: by \: 1 \div 4 = 6 \div 1 \div 4 = 6 \times 4 \div 1 = 24\)
AB and AD are tangent to circle C. Find the length of AB, if AB = 8x and AD = x + 9. Round your answer to 2 decimal places.
Answer:
To find the length of AB, we can use the property that two tangents to a circle from the same external point are equal. This means that AB = AD. Substituting the given values, we get:
8x = x + 9
Solving for x, we get:
x = 1.5
Therefore, AB = 8x = 8(1.5) = 12.
To check our answer, we can use the Pythagorean theorem on triangle ABD, since AB is perpendicular to BD at the point of tangency. We have:
AB^2 + BD^2 = AD^2
Substituting the values, we get:
12^2 + BD^2 = (1.5 + 9)^2
Simplifying, we get:
BD^2 = 56.25
Taking the square root of both sides, we get:
BD = 7.5
Hence, the length of AB is 12 and the length of BD is 7.5.
MARK AS BRAINLIEST!!!
if cosø = -5/13 and sin ø<0 what is tan ø
Answer:
12:5
Step-by-step explanation:
PLEASE HELP WILL MARK YOU!!!
Answers:
a = 69b = 47c = 116d = 93e = 86==========================================================
Explanation:
For now, focus on the triangle with angles 'a', 71 and 40 degrees.
Recall that for any triangle, the inside angles always add to 180
a+71+40 = 180
a+111 = 180
a = 180-111
a = 69
---------------
Notice how angles b and 133 are adjacent and form a straight angle. This makes them supplementary. Meaning they add to 180
b+133 = 180
b = 180-133
b = 47
---------------
Let angle f be adjacent to angle c, and part of the triangle with angles 'a' and b.
Use the rule mentioned in the first section
a+b+f = 180
69+47+f = 180
116+f = 180
f = 180-116
f = 64
Now we can find angle c, because angles f and c are supplementary
c+f = 180
c+64 = 180
c = 180-64
c = 116
We could also use the remote interior angle theorem to say that a+b = c, so c = a+b = 69+47 = 116
---------------
Next, focus your attention on the 140 degree angle. The missing adjacent angle to this is 180-140 = 40 degrees
Now focus on the triangle that has angles d, 40, and 47. The "40" being what we just calculated in the previous paragraph.
We'll do the same thing as before
d+40+47 = 180
d+87 = 180
d = 180-87
d = 93
---------------
The angle just above angle d is also the same (vertical angles). This upper triangle has angles 40, d and g, where g is unknown. Let's find it.
40+d+g = 180
40+93+g = 180
133+g = 180
g = 180-133
g = 47
The vertical angle across from this is also 47 degrees.
Similarly, we can move that angle b over to its vertical pairing counterpart.
The smallest triangle at the very top has angles e, b, and g
e+b+g = 180
e+47+47 = 180
e+94 = 180
e = 180-94
e = 86
Mark is also making candy bags for his 5 friends. He has 15 pieces of candy and wants to buy more candy so that he has enough for each of his friends to receive 20 pieces of candy.how much candy ,c, must mark buy
Answer:
85 more candies
Step-by-step explanation:
15/5=3 (3 candies for each friend)
20-3=17 more candies for each friend
17 x 5 = 85 more candies Mark needs to buy in order to give each of his 5 friends 20 pieces of candy.
A student takes a subway to a public library. The table shows the distance d (in miles) the student travels in t minutes. Determine whether the data can be modeled by a linear, exponential, or a quadratic function and then select a function rule to model the situation.
t
d
1
0.83
2
1.66
3
2.49
4
3.32
5
4.15
The linear function that models the situation is given as follows:
d = 0.85t.
What is a proportional relationship?A proportional relationship is a relationship in which a constant ratio between the output variable and the input variable is present.
The equation that defines the proportional relationship is a linear function with slope k and intercept zero given as follows:
y = kx.
The slope k is the constant of proportionality, representing the increase or decrease in the output variable y when the constant variable x is increased by one.
The constant ratio for this problem is given as follows:
k = 0.83, as each division of d by t has a result of 0.83.
Hence the equation is given as follows:
d = 0.83t.
A similar problem, also featuring proportional relationships, is presented at https://brainly.com/question/7723640
#SPJ1
Why f(\(\pi\)) = 0 and f '(\(\pi\)) = 3
When \(\lim_{x \to \\\pi } \frac{f(x)}{x-\pi} = 3\)
Answer:
application of L'Hopital's rule to the presumed indeterminate form yields this conclusion
Step-by-step explanation:
This is a reverse application of L'Hopital's rule for determining the limits involving indeterminate forms.
When the expression evaluated at the limit is 0/0, then L'Hopital's rule tells you the limit can be found from n'/d', where n and d are the numerator and denominator of the original expression, respectively.
We can see that x-π = 0 at x=π, so we assume that f(π) = 0 as well, and the expression n/d = f(x)/(x-π) evaluates to the indeterminate form 0/0.
The derivatives are ...
n' = f'(x)
d' = 1
Then we have the limit as ...
lim{x→π) = n'/d' = f'(π)/1 = 3 ⇒ f'(π) = 3
The conclusion f(π)=0 and f'(π)=3 follows from L'Hopital's Rule.
y=18 +6x
Rate of change:
How many cubic centimeters are there in 24 cubic meters?
A.40,000 cm³
B.24,000,000 cm³
C.None of these choices are correct.
D.2,400,000 cm³
E.24,000 cm³
Answer:
C none of the answer is correct 24m³–cm³ is 2400cm³
Dwight has a new job that garuntees a six percent raise of each year with the company. His initial salary $52,000 per year
Answer:
y= 52,000+.6x
Step-by-step explanation:
Renata is purchasing a condominium for $125,000. She wants to put down a down payment of 20%. Select all the true statements. The proportion that represents the down payment is 20100=125,000 20 100 = 125 , 000 x . The down payment is $25,000. The proportion that represents the down payment is 20100=125,000 20 100 = x 125 , 000 . The down payment is $50,000. The down payment is 15 1 5 of the cost of the house.
The correct options are -
The proportion that represents the down payment is : 20/100 x 125000.The down payment is $25,000What is down payment?When something is bought on credit, an initial payment is made in the form of a down payment.
Given is that Renata is purchasing a condominium for $125,000. She wants to put down a down payment of 20%.
We can calculate the amount she is putting in down payment as -
{x} = 20% of 125000
{x} = 20/100 x 125000
{x} = 20 x 1250
{x} = 25000
Therefore, the correct options are -
The proportion that represents the down payment is : 20/100 x 125000.The down payment is $25,000To solve more questions on functions & equations, visit the link-
https://brainly.com/question/29014197
#SPJ9
More than two-thirds of undergraduate students who graduated with a bachelor's degree had student loan debt. The average student loan debt among these graduating seniors was $28,654. The average interest rate on student loans was 6.1%. How much interest did a student with $28,654 in student loan debt pay in the first year? Round to the nearest cent.
The interest paid for the loan is $1748
Given that there is a 6.1% interest rate for a loan of $28,654 in student loan debt pay in the first year,
We need to find the interest paid for the same.
So,
Simple Interest = principal × time × rate / 100
= 28654 × 1 × 6.1 / 100
= 28654 × 0.061
= 1747.894
= 1748
Hence the interest paid for the loan is $1748
Learn more about Simple Interest click;
https://brainly.com/question/25845758
#SPJ1
Amadi is three times as old as Chima. The sum of their ages is 24
Answer:
Amadi: 20 years old
Chima : 4 years old
Margie makes a necklace using 14 purple beads for every 6 silver beads. The necklace contains 80 beads. How many of each color bead are in the necklace?
The quantity of each colour beads that are in the necklace include the following:
Purple beads = 56
Purple beads = 56silver beads = 24
Purple beads = 56silver beads = 24What is a ratio?A ratio is defined as the mathematical expression that shows the number of times one value is contained in another value.
The number of purple beads = 14
The number of silver beads ,= 6
The total quantity of beads = 80
Therefore the total combination = 14+6 = 20
For purple beads = 14/20 × 80/1
= 1120/20 = 56
For silver beads = 6/20×80/1
= 480/20= 24
Learn more about ratio here:
https://brainly.com/question/25927869
#SPJ1
Help pldssssssss………………..
The missing value for the quadratic function is given as follows:
y = -3.
How to obtain the quadratic function?As a function of it's roots x* and x**, the quadratic function is defined as follows:
y = a(x - x*)(x - x**)
In which a is the leading coefficient.
The roots of the function are the values of x when y = 0, hence:
x* = -4, x** = -2.
Thus:
y = a(x + 4)(x + 2)
y = a(x² + 6x + 8).
When x = 0, y = -8, hence the leading coefficient a of the function is given as follows:
8a = -8
a = -1.
Hence:
y = -x² - 6x - 8;
The missing value is the value of y when x = -1, hence:
y = -(-1)² - 6(-1) - 8
y = -3.
More can be learned about quadratic functions at https://brainly.com/question/1214333
#SPJ1
NEED HELP ASAP WILL MARK BESTT
Answer:
a = 36
Step-by-step explanation:
For the system to have no solution, the two lines must have the same slope and different y -intercept, that is, be parallel lines.
The slope of the first line is "-1/2" (negative one half) when we solve for y:
\(y = -\frac{1}{2} x+\frac{11}{6}\)
so we want the slope of the second line to be the same, and the y-intercept to be different:
\(y=-\frac{a}{72} x+\frac{61}{36}\)
We see that the y-intercepts are different, so all is needed now is to find the appropriate a that gives a slope = -1/2, and that a value is 36.
At a candy store, Arianna bought 4 pounds of jelly beans and 3 pounds of gummy worms for $39. Meanwhile, Sue bought 6 pounds of jelly beans and 6 pounds of gummy worms for $66. How much does the candy cost? A pound of jelly beans costs $________, and a pound of gummy worms costs $__________.
Rewriting 3x^2=6x and solving with rewritten
Answer:
x = 0 , x = 2
Step-by-step explanation:
3x² = 6x ( subtract 6x from both sides )
3x² - 6x = 0 ← factor out 3x from each term
3x(x - 2) = 0
equate each factor to zero and solve for x
3x = 0 ⇒ x = 0
x - 2 = 0 ( add 2 to both sides )
x = 2
solutions are x = 0 , x = 2
give me answer ........................................................
The bottom row and right column are representing totals of previous cells and the grand total is 82 as indicated in the question.
Find the missing numbers in the following order:
Teachers/Apples = 24 - 22 = 2Teachers/Oranges = 25 - 24 = 1Total/Total = 82 (given)Teachers/Total = 2 + 4 + 1 = 7Students/Total = 82 - 7 = 75Students/Grapes = 75 - 24 - 22 = 29Totals/Grapes = 29 + 4 = 33can smby help me plz ?!
Answer:
i need these points sorry
Step-by-step explanation:
Sets Sets M and Fare defined as follows: M = {a,b,c,d} F = {c, d, e, f} Find the intersection of M and F.
The intersection of sets M and F contains the elements "c" and "d".
To find the intersection of sets M and F, we need to identify the elements that are common to both sets.
M = {a, b, c, d}
F = {c, d, e, f}
The intersection of M
and F is denoted by M ∩ F, which represents the set containing elements that are present in both M and F.
Looking at the elements in M and F, we can see that the common elements between the two sets are "c" and "d".
Therefore, the intersection of M and F can be expressed as:
M ∩ F = {c, d}
So, the intersection of sets M and F contains the elements "c" and "d".
for such more question on intersection
https://brainly.com/question/11337174
#SPJ8
5TH GRADE LEVEL QUESTION. look at photo and answer handing brainliest.
Answer:
13/24
can't be simplified
Step-by-step explanation:
you can make them have the same denominator by multiplying.
denominator of 24 is 8*3
and 3*8
then multiply their numerators by the same values
7/8 times 3= 21/24
1/3 times 8= 8/24
subtract
21-8= 13
so 13/24
Volume of a sphere -
where r is the radius.
A cylinder has radius x and height h.
3x
A hemisphere has radius
2
r: h= 4:9
Prove that the cylinder and the hemisphere have the same volume.
[4marks]
The volume of hemisphere is equal to the volume of the cylinder and the volume is equal to the 9/4× π×x³.
From the given, the volume of the sphere with radius r,
Volume of sphere = (4/3)πr³
The volume of the cylinder with radius x and height h,
Volume of cylinder = π×r²×h
= π×x²×h
The ratio of the radius and height (x:h) = (4:9)
the height of the cylinder is h= (9x/4)
Volume of the cylinder = π×x²×(9x/4)
= π×x³×(9/4)
The hemisphere radius, r = (3x/2)
Volume of hemisphere = 1/2 (Volume of sphere)
= 1/2 (4/3 × π×r³)
= 1/2 (4/3 × π ×(3x/2)³) (where r= (3x/2))
= (9/4×π×x³)
Thus, the volume of cylinder and the volume of hemisphere is same and is equal to 9/4×π×x³.
To learn more about the Volume :
https://brainly.com/question/29300805
#SPJ1
which point from the equation would you use? y-7=3(x+9)
Another point on the line is (-9, 7). Ultimately, the choice of which point to use depends on the context or specific requirements of the problem you are solving.
To determine which point to use from the equation y - 7 = 3(x + 9), we need more information.
The equation provided represents a linear equation in the form y - y1 = m(x - x1), where (x1, y1) is a point on the line and m is the slope.
Without additional context or specific instructions, we can choose any point that satisfies the equation to use as a reference.
For example, if we let x = 0, we can solve the equation for y:
y - 7 = 3(0 + 9)
y - 7 = 3(9)
y - 7 = 27
y = 27 + 7
y = 34
So, one point on the line is (0, 34).
Alternatively, if we let x = -9, we can solve the equation for y:
y - 7 = 3(-9 + 9)
y - 7 = 3(0)
y - 7 = 0
y = 7
So, another point on the line is (-9, 7).
For more question on line click on
https://brainly.com/question/24644930
#SPJ11
f(x)=3^x+1 and g(x) = 2x-4, find f(2) - g(-1)
Answer:
16
Step-by-step explanation:
3^x +1 = f(X)
2x-4 = g(x)
find f(2)-g(-1)
we substitute in function f(X) by value (2), and in function g(X) by value (-1)
1. 3^x +1 becomes 3^2+1 =9+1=10
2. 2(-1)-4= -2-4=-6
then f(2)-g(-1)
= 10-(-6) =10+6=16
I don't understand this, help me?
Answer:
Hello' I think you forgot to add a picture
what is the reciprocal for 4/9
Answer: 9/4
Step-by-step explanation:
Reciprocal means flip the fraction
The reciprocal of 4/9 is 9/4
Answer: the rciprocal is 9/4
Step-by-step explanation:
A playground 88 ft long and 58 ft wide is to be resurfaced at a cost of $2.75 per sq ft. What will the resurfacing cost?
The resurfacing will cost $.
(Simplify your answer. Type an integer or a decimal.)
Answer: $1856
Step-by-step explanation: 88 x 58 = 5104. 5104/2.75= 1856
Someone ride a bike at a constant speed they go 90miles in 6 hours what was their speed
The perimeter of a rectangle is 50cm. The length is 2 more than three times the width. What is the length of the rectangle?
The length of the rectangle is 19.25 cm when it is 2 more than three times the width of 5.75 cm.
What is Perimeter?A perimeter is a closed path that encompasses, surrounds, or outlines a two-dimensional shape or length in one dimension. A circle's or an ellipse's circumference is its perimeter. There are several applications for calculating the perimeter. The length of fence required to encircle a yard or garden is known as the calculated perimeter.
The perimeter (circumference) of a wheel/circle describes how far it can roll in one revolution. Similarly, the amount of string wound around a spool is proportional to the perimeter of the spool; if the length of the string were exact, it would equal the perimeter.
Given that,
Perimeter = 2(l + b) = 50cm
And also given that,
l = 2 + 3b
Substituting the value of l in perimeter we get
2((2 + 3b) + b) = 50cm
2(2 + 4b) = 50cm
4 + 8b) = 50cm
8b = 50 - 4
b = 46/8
b = 5.75
Substituting the value of b in l, we get
l = 2 + 3(5.75)
l = 19.25
Therefore, the length of the rectangle is 19.25 cm when it is 2 more than three times the width of 5.75 cm.
Learn more about perimeter
https://brainly.com/question/397857
#SPJ1