The option B is correct. The total surface area is 457.4
How to solve for total surface area?1 / 2 x 17 x 11
= 93.5
base area = 17 x 13
= 221 in^2
Area of bigger triangle = 2 x 93.5
= 187 in^2
Area of small triangle = 1 / 2 x 13 x 12.3
= 79.95 in^2
The area would be 221 in^2 + 187 in^2 + 79.95 in^2
total surface area would be 457.4
Read more on total surface area herehttps://brainly.com/question/16519513
#spj1
what is the critical value for 96 confidence interval for a sample size of 15
The critical t-value is approximately 1.753.
To find the critical value for a 96% confidence interval with a sample size of 15, we need to determine the t-value from the t-distribution table. The t-distribution table is a statistical tool used to determine the probability of a t-value given the degrees of freedom (df) and the desired level of significance (α).
In this case, we have a sample size of 15, which means our degrees of freedom are 14 (n - 1). Looking at a t-distribution table for 14 degrees of freedom and a 96% confidence interval.
This means that if we were to construct a confidence interval from a sample size of 15, the margin of error would be calculated by multiplying the critical t-value of 1.753 by the standard deviation of the sample and dividing by the square root of the sample size. The resulting interval would contain the population mean with 96% confidence.
It's essential to note that the critical value will change as the sample size and confidence level change. Therefore, it's crucial to use the correct table to find the corresponding critical values for a given dataset's sample size and confidence level.
For such more questions on critical
https://brainly.com/question/30459381
#SPJ8
Juan concludes that x? + 7x + 3 cannot be factored using integers.
is juan correct? how could juan improve his strategy?
I HOPE IT WILL HELP YOU. If it is right then plz tell me .
What is three-fifteenths of ten?
Answer: The answer is 2.
Step-by-step explanation: 3/15 can be simplified to 1/5. Find 1/5 of 10. You can do that by dividing 10 and 5. Therefore, the answer is 2.
Whats the domain???
Answer:
HERE IT IS...
Step-by-step explanation:
the domain or set of departure of a function is the set into which all of the input of the function is constrained to fall. It is the set X in the notation f: X → Y, and is alternatively denoted as. Since a function is defined on its entire domain
Answer:
Very simple!
Step-by-step explanation:
The domain of a function is where the function is defined, for the values of x.
Long story short, see the function? Where the blue line passes over the x-vales is the domain. Where there is no blue line over the x-values does not belong to the domain.
Thus, the function is defined for \(-8\leq x\leq 8\), or \([-8, 8]\).
Sorry about the bad explanation.
Stay Safe!
A math test with 26 questions is worth 100 points. There are multiple choice questions that are worth 2 points each and fill in the blank questions that are worth 5 points each. How many of each type of question is there?.
Answer:
Step-by-step explanation:
which is an equation of a line that has a slope of 1 and passes through (5,3)?
y=x-2
y=x+2
y=x+3
y=x-5
(15 pts.) Thank you :)
Write the equation of the line (in slope-intercept form) that has an x-intercept at -6 and a y-intercept at 2. Provide a rough sketch of the line indicating the given points. [1 mark]. Exercise 2. For the polynomial f(x) = −3x² + 6x, determine the following: (A) State the degree and leading coefficient and use it to determine the graph's end behavior. [2 marks]. (B) State the zeros. [2 marks]. (C) State the x- and y-intercepts as points [3 marks]. (C) Determine algebraically whether the polynomial is even, odd, or neither.
To determine if the polynomial is even, odd, or neither, we substitute -x for x in the polynomial and simplify. -3(-x)² + 6(-x) = -3x² - 6x. Since the polynomial is not equal to its negation, it is neither even nor odd.
To write the equation of the line with an x-intercept at -6 and a y-intercept at 2, we can use the slope-intercept form of a line, y = mx + b, where m is the slope and b is the y-intercept.
In this case, the y-intercept is given as 2, so the equation becomes y = mx + 2. To find the slope, we can use the formula (y2 - y1) / (x2 - x1) with the given points (-6, 0) and (0, 2). We find that the slope is 1/3. Thus, the equation of the line is y = (1/3)x + 2.
For the polynomial f(x) = -3x² + 6x, the degree is 2 and the leading coefficient is -3. The end behavior of the graph is determined by the degree and leading coefficient. Since the leading coefficient is negative, the graph will be "downward" or "concave down" as x approaches positive or negative infinity.
To find the zeros, we set the polynomial equal to zero and solve for x. -3x² + 6x = 0. Factoring out x, we get x(-3x + 6) = 0. This gives us two solutions: x = 0 and x = 2.
The x-intercept is the point where the graph intersects the x-axis, and since it occurs when y = 0, we substitute y = 0 into the polynomial and solve for x. -3x² + 6x = 0. Factoring out x, we get x(-3x + 6) = 0. This gives us two x-intercepts: (0, 0) and (2, 0).
To determine if the polynomial is even, odd, or neither, we substitute -x for x in the polynomial and simplify. -3(-x)² + 6(-x) = -3x² - 6x. Since the polynomial is not equal to its negation, it is neither even nor odd.
Learn more about Polynomial here:
brainly.com/question/28973842
#SPJ11
Partial Question 4 Determine the limit of the sequence (1) {2} [Select] n+3 (2) { (+³)"} [Select] (3) {n sin()} [Select] (4) {sin(nπ)} [Select] Answer 1: the limit DNE, the sequence diverges Answer
The limit of the sequence (1) {2}, (2) {(-1)^n}, and (3) {n sin(n)}, converges to DNE (does not exist) or the sequence diverges. The limit of the sequence (4) {sin(nπ)} is undefined, as it oscillates between -1 and 1.
In the case of sequence (1) {2}, the limit is a constant value, and the sequence converges to that value. However, in the case of sequence (2) {(-1)^n}, the sequence oscillates between -1 and 1, and there is no single value that it approaches as n tends to infinity. Therefore, the limit does not exist, and the sequence diverges.
Sequence (3) {n sin(n)} also does not have a limit as n tends to infinity. The term n sin(n) oscillates between positive and negative values without approaching a specific value. Hence, the limit of this sequence is DNE, and it diverges.
In the case of sequence (4) {sin(nπ)}, the term sin(nπ) oscillates between -1 and 1 as n varies. Since there is no convergence to a specific value, the limit of this sequence is undefined.
To learn more about limit click here: brainly.com/question/12211820
#SPJ11
Use this graph to find estimates for the solutions of the quadratic equation x-4x
If 60% of all women areemployed outside the home, find the probability that in a sample of20 women,
a. Exactly 15 are employed outside the home.
b. At least 10 are employed outside the home.
c. At most 8 are employedoutside the home
The probability of exactly 15 are employed outside the home is 0.209, at least 10 are employed outside the home is 0.9726, and at most 8 are employed outside the home is 0.12020.
Given that, 60% of all women are employed outside the home. Let P (E) be the probability of employed women.
Then P(E) = 60 / 100 = 0.6 We need to find the probability that in a sample of 20 women,
Exactly 15 are employed outside the home.
At least 10 are employed outside the home.
At most 8 are employed outside the home.
a. To find the probability of exactly 15 employed women, we use the Binomial distribution.
The probability of exactly r successes in n independent Bernoulli trials is P (X = r) = nCr (p)^r (q)^(n-r)
Here, n = 20, r = 15, p = 0.6, q = 0.4
So, P (X = 15) = nCr (p)^r (q)^(n-r)= 20C15 (0.6)^15 (0.4)^5= 0.209
b. To find the probability of at least 10 employed women,
we use the complement of P(X ≤ 9).P(X ≥ 10) = 1 – P(X ≤ 9)So, P(X ≥ 10) = 1 - [P(X=0) + P(X=1) + ... + P(X=9)] = 1 - F(9)
Here, F(9) is the cumulative probability when x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
Using the binomial distribution formula,
we find: F(9) = P(X ≤ 9) = ΣP(X = i) = ΣnCi (p)^i (q)^(n-i) i=0 to 9Now, n = 20, p = 0.6, q = 0.4
Hence, P(X ≥ 10) = 1 - F(9) = 1 - P(X ≤ 9) = 1 - ΣnCi (p)^i (q)^(n-i) i=0 to 9= 1 - (0.00045 + 0.00604 + 0.04162 + 0.15580 + 0.35131 + 0.42331 + 0.26801 + 0.08722 + 0.01525 + 0.00121)= 0.9726
c. To find the probability of at most 8 women employed outside the home,
we use the binomial distribution formula, and P (X ≤ 8).P(X ≤ 8) = ΣP(X = i) = ΣnCi (p)^i (q)^(n-i) i=0 to 8
Now, n = 20, p = 0.6, q = 0.4So, P(X ≤ 8) = ΣnCi (p)^i (q)^(n-i) i=0 to 8= 0.00015 + 0.00257 + 0.01831 + 0.07151 + 0.17355 + 0.29002 + 0.33539 + 0.22957 + 0.07832= 0.12020
Therefore, the probabilities are as follows:
a. Exactly 15 are employed outside the home = 0.209
b. At least 10 are employed outside the home = 0.9726
c. At most 8 are employed outside the home = 0.12020
To know more about binomial distribution visit:
https://brainly.com/question/29137961
#SPJ11
Add:
\(4 { x }^{ 2 } y+-3x { y }^{ 2 } +-5x { y }^{ 2 } +5 { x }^{ 2 } y\)
Step-by-step explanation:
\(4\)
\(4 {x}^{2} - 3x {y}^{2} \)
a manufacturer of chocolate chips would like to know whether its bag filling machine works correctly at the 402 402 gram setting. is there sufficient evidence at the 0.05 0.05 level that the bags are underfilled or overfilled? assume the population is normally distributed. state the null and alternative hypotheses for the above scenario.
For the weight of bags 402 grams filled with chocolate chips the required null hypothesis and alternative hypothesis equal to H0: μ = 402 and Ha: μ ≠ 402.
Weight of the bag filled with chocolate chips made by machine works = 402 grams
The null hypothesis for the bag filled with machine work representing the statement has no effect.
And it represents that the mean weight of the bag filled with chocolate chips is 402grams.
Null hypothesis for the given scenario is equal to ,
H0: μ = 436
The alternative hypotheses for the above scenario of the bag isn't filled with chocolate chips with weight 402grams.
They are either under filled or that is less than 402grams or overfilled that is above 402grams.
Alternative hypothesis for the given scenario is equal to,
Ha: μ ≠ 402
Statistics is the study of surveys and research of the given numerically data.
Two different kinds of hypotheses we have,
A null hypothesis is one that holds true for the given scenario.
And an alternate hypothesis is another.
The null hypothesis is a default condition to represents nothing is happening.
Possibility of no relationship between two given measured groups.
Learn more about hypothesis here
brainly.com/question/23936780
#SPJ4
The area of a rectangle is 52 in^2. If the length is 9 inches more than the width, find the
dimensions of the rectangle.
Answer:
width=4in.
length=13in
Step-by-step explanation:
let the width of the rectangle be x
then the length will be x+9
Area= length×width
52= (x+9)x
52= x²+9x
x²+9x-52=0
x²+13x-4x-52=0
x(x+13) - 4(x+13)= 0
(x-4)(x+13)=0
x=4 or -13
dimension cannot be negative
hence x=4in
the width is 4in. and the length is 4+9=13in.
The solution is, width=4in.
length=13in
What is area ?Area is the measure of a region's size on a surface. The area of a plane region or plane area refers to the area of a shape or planar lamina, while surface area refers to the area of an open surface or the boundary of a three-dimensional object.
here, we have,
The area of a rectangle is 52 in^2.
If the length is 9 inches more than the width.
let the width of the rectangle be x
then the length will be x+9
Area= length×width
so, we have,
52= (x+9)x
52= x²+9x
x²+9x-52=0
x²+13x-4x-52=0
x(x+13) - 4(x+13)= 0
(x-4)(x+13)=0
x=4 or -13
dimension cannot be negative
hence x=4in
so, we get,
the width is 4in. and the length is 4+9=13in.
To learn more on Area click:
brainly.com/question/20693059
#SPJ3
Convert 6 miles to feet. hint: 1 mile is 5280 feet
O 35180ft
O 880ft
O 31680ft
Answer:
the answers got deleted because they didn't give an explanation. so, the explanation is: you multiply 5,280 by 6 to get 31,680 ft
Answer:
31680 feet
Step-by-step explanation:
You multiply 5280 nd and you get 31680...
The base of 3^8 is 3
•true
•false
Answer:
true
Step-by-step explanation:
Answer:
Step-by-step explanation:
True
3 is the base and ^8 is the power or exponent.
the time spent waiting in the line is approximately normally distributed. the mean waiting time is 5 minutes and the standard deviation of the waiting time is 2 minutes. find the probability that a person will wait for more than 9 minutes. round your answer to four decimal places.
The probability that a person will wait for more than 9 minutes is approximately 0.0228, or 2.28% when rounded to four decimal places
To find the probability that a person will wait for more than 9 minutes, we'll use the z-score formula and a standard normal distribution table (Z-table).
First, calculate the z-score using the formula:
z = (X - μ) / σ
Where X is the value we're interested in (9 minutes), μ is the mean (5 minutes), and σ is the standard deviation (2 minutes).
z = (9 - 5) / 2
z = 4 / 2
z = 2
Now, look up the probability for a z-score of 2 in a Z-table. You'll find a value of 0.9772, which represents the probability of waiting less than or equal to 9 minutes. To find the probability of waiting more than 9 minutes, subtract this value from 1:
Probability of waiting more than 9 minutes = 1 - 0.9772 = 0.0228
Know more about probability here:
https://brainly.com/question/30034780
#SPJ11
.
Please help with number 2!
Answers:
D'' = (1, -3)
E'' = (1, -1)
F'' = (3, -1)
G'' = (3, -4)
A diagram is shown below.
========================================================
Explanation:
The center of dilation is point E, which means this point does not move when the dilation is applied. Every other point will move.
As your diagram indicates, segment DE is 4 units long. If we apply the scale factor 1/2, then D'E' will be half as long meaning D'E' = 2. So point D' is 2 units above point E at (1,3)
Point F is 4 units away from point E. The scale factor 1/2 will bring F closer to E leading to segment F'E' = 2. So we'll start at E and move 2 units to the right to land on F ' (3, 1)
From F to G is 6 units, which cuts in half to 3. So from F' to G' is 3 units telling us we start at F ' (3, 1) and go up three units to get go G ' (3, 4)
So far we have
D ' = (1, 3)
E ' = (1, 1) ... fixed point doesn't move
F ' = (3, 1)
G ' = (3, 4)
-------------
From here we'll apply the reflection over the x axis rule which says
\((x,y) \to (x, -y)\)
the x coordinate stays the same, and the y coordinate flips from positive to negative (or vice versa).
Based on what was mentioned for D', E', F' and G', we get the following
D'' = (1, -3)
E'' = (1, -1) .... this point does move now
F'' = (3, -1)
G'' = (3, -4)
Points E' and E'' are in different locations because all fixed points in this reflection are along the mirror line y = 0 (aka the x axis). In other words, if E was on the x axis, then it would not move if we applied this reflection.
Check out the diagram below see a visual summary of what happened. Note how the red points moved in closer to point E (since the distances from the center E have been cut in half) compared to the blue counterparts.
-7(2x-3) equivalent expression
Answer:
-14x+21
Step-by-step explanation:
-7(2x-3)
-14x+21
Answer:
-14x+21
Step-by-step explanation:
suppose a fair die is rolled 11 times. (a) what is the probability p that a 3 will occur any given time the die is rolled? (enter your probability as a fraction.)
The probability that a 3 will get any given times the dies is rolled is 0.17x
Total number of outcomes in one roll = 6
The favorable outcome = 3
The probability = Number of favorable outcomes / Total number of outcomes
Substitute the values in the equation
The probability of getting 3 in first roll= 1 / 6
Total number of times the die rolled = 11 times
The probability of getting 3 in all given times = (The probability of getting 3 in first roll )^ (Number of times the die rolled)
Consider the number of rolls as x
Substitute the values in the equation
The probability of getting 3 in all the given times = (1/6)^x
= 0.17x
Hence, the probability that a 3 will get any given times the dies is rolled is 0.17x
Learn more about probability here
brainly.com/question/11234923
#SPJ1
The mad mathematician is trying to determine if you would be able to make it to the top of the building before he makes it to you. Set up a right triangle model for this problem and solve by using the trigonometric ratio that applies. The mad mathematician is standing on a ramp that is 60 yards in length. He observes you standing at the top of the building at an elevated angle of 41°. How tall is the building?
The building is 39.06 yards tall.
What is Trigonometry?The area of mathematics that deals with particular angles' functions and how to use those functions in calculations. There are six popular trigonometric functions for an angle. Sine (sin), cosine (cos), tangent (tan), cotangent (cot), secant (sec), and cosecant are their respective names and acronyms (csc).
Given:
Hypotenuse (ramp)= 60 yards
Angle of Elevation = 41°
Using Trigonometry
sin 41= P/H
0.651 = P/60
P= 39.06 yard.
Hence, the height is 39.06 yard.
Learn more about Trigonometry here:
https://brainly.com/question/29002217
#SPJ1
The acute angle formed by the chord line of a wing and the relative wind is known as the?
The acute angle formed by the chord line of a wing and the relative wind is known as the "angle of attack."
What is angle of attack?A angle about which relative air meets an aerofoil is defined as the Angle of Attack.
Some key features regarding the angle of attack are-
It is the angle made by a Chord of a aerofoil & a direction of a relative wind, and the vector indicating the aircraft's relative motion in relation to the atmosphere.The angle of attack is merely the difference between in which a wing is indicating and where it is traveling.Up to a point, increasing the angle of attack increases both lift & induced drag. An angle of attack that is too high (around 17 degrees) causes the airflow from across upper of the aerofoil to become detached, causing a loss of lift, also known as a Stall.To know more about the angle of attack, here
https://brainly.com/question/15563716
#SPJ4
Find the area of this trapezoid. Be sure to include the correct unit in your answer.
please do, thank you
1) write a real world problem for the following inequality X < 17
2) draw a number line and graph the inequality
3) make a cartoon strip, model or short video to represent your problem
Answer:
{poiuyt
Step-by-step explanation:
Which is the odd number out of each list?
1. 16,32,40,52
2. 21,35, 62, 84
3. 24, 46, 84, 132
4. 18, 32, 48, 90
5. 16, 27, 54, 81
Answer:
1. none are odd
2. 21,35
3.none
4.none
5.27,81
Answers:
1. None (all even)
2. 21 & 35
3. None (all even)
4. None (all even)
5. 27 & 81
Please Mark Brainliest!In a Survey conducted at a pet store, 150 customers were asked if they owned birds or fish. the survey data are shown in the relative frequency table
own a bird do not own a bird total
own a fish 0.04 0.08
do not own a fish 0.02 0.86
total
What percentage of the people surveyed own fish?
A. 12%
B. 4%
C. 8%
D. 0.12%
Using the given proportions, it is found that the percentage of the people surveyed own fish is given by:
A. 12%.
What is a proportion?A proportion is a fraction of a total amount, and the measures are related using a rule of three. When a proportion is multiplied by 100%, we get a percentage.
From the table, it is found that the proportion of people who own a fish is of 0.04 + 0.08 = 0.12. Hence the percentage is of 12%, and option A is correct.
More can be learned about proportions at https://brainly.com/question/24372153
#SPJ1
What criterion can be used to prove the triangles congruent with the given information?
Answer:
D. none of these
Step-by-step explanation:
The image only shows two congruent angles/sides. In order for one of the given postulates to work, 3 congruent parts of the triangles must be applicable.
Find the principal (positivt) square root of 16. If necessary, round the answer
to the nearest hundredth (two decimal places).
May someone plz help me!
Answer:
#1Net worth = $5480.80Liabilities = $3260.60Assets = $5480.80 + $3260.60 = $8741.40Assets increase 10%:
$8741.40*1.1 = $9615.54Liabilities decrease 10%:
$3260.60*0.9 = $2934.54Net worth now is:
$9615.54 - $2934.54 = $6681.00Correct choice is J
#2Total budget:
250 + 825 + 1247 + 385 + 722 + 657 + 250 + 291 = 4627Transportation and clothing:
657 + 385 = 1042Percentage of transportation and clothing:
1042 / 4627 * 100% = 23%Correct choice is C
#3Gross income:
$1618.30Deductions:
$19.80 + $1618.30*(0.045 + 0.15) = $335.37Net pay:
$1618.30 - $335.37 = $1282.93PLSSSS HELP ASAPPP
Andrew has 34 coins in his pocket. His coins total $2.65. If he has dimes and nickels in his pocket, how many dimes does he have?
Along a road there is an emergency telephone every 10 km, a water well every 15 km and a gas station every 20 km. How often do a telephone, a well and a gas station coincide?
Answer:
60 km
Step-by-step explanation:
Given that :
Location of emergency telephone = every 10km
Location of water well = Every 15 km
Location of gas station = every 20 km
To obtain how often an emergency telephone, water well and gas station coincide, we obtain the lowest common multiple of 10, 15 and 20
Multiples of ;
10 : 10, 20, 30, 40, 50, 60, 70
15 : 15, 30, 45, 60, 75, 90, 105
20 : 20, 40, 60, 80, 100
Hence, the lowest common multiple of 10, 15 and 20 is 60, thus, an emergency telephone line, gas station and water well will coincide every 60km