Answer:
Measure of each of the angles:
(x - 25)° = 50°
(2x - 65)° = 85°
3x = 225°
Step-by-step explanation:
Angle around a point = 360°
Here,
(2x - 65)° + (x - 25)° + 3x° = 360° [angles around a point]
2x - 65 + x - 25 + 3x = 360°
2x + x + 3x - 65 - 25 = 360
6x - 90 = 360
6x = 360 + 90
6x = 450
x = 450/6
x = 75
Then,
x - 25
= (75) - 25
= 50°
(2x - 65)°
= 2(75) - 65
= 85°
3x°
= 3(75)
= 225°
Hope it helps ⚜
Answer:
Step-by-step explanation:
3x + x - 25 + 2x - 65 = 360 {Full angle or one point angle}
3x +x + 2x - 65 - 25 = 360
Combine like terms,
6x - 90 = 360
Add 60 to both sides,
6x = 360 + 90
6x = 450
Divide both sides by 6
x = 450/6
x = 75
3x = 3*75 = 225°
x - 25 = 75 - 25 = 50°
2x - 65 = 2*75 - 65 = 150 - 65 = 85°
What is the range of the function f(x) = |x| + 3?
{f(x) ∈ ℝ | f(x) ≤ 3}
{f(x) ∈ ℝ | f(x) ≥ 3}
{f(x) ∈ ℝ | f(x) > 3}
{f(x) ∈ ℝ | f(x) < 3}
{f(x) ∈ ℝ | f(x) ≥ 3} is the range of f(x) = |x| + 3
⇒ Range is in the y-axisWhen graphing the following equation shown below:
f(x) ≥ 3f(x) ∈ ℝ[ 3, ∞ ]Answer:
{f(x) ∈ ℝ | f(x) ≥ 3}
Step-by-step explanation:
The range of a function is the output values (y-values).
Absolute value is the distance of x from zero, so it is never negative. It is denoted by a bar on either side of the term.
Therefore, as |x| ≥ 0 then |x| +3 ≥ 3
Therefore, the range of the function is {f(x) ∈ ℝ | f(x) ≥ 3}
Jack brought a lunch box for $8 and 7 forks. He spent a total of $105. How much did each fork cost?
Answer:
13.85$
Step-by-step explanation:
105$-8$=97$
97$/7$=13.85$
Answer: About $13.86
Step-by-step explanation: To find how much the cost of the forks is, we need to subtract the value of the lunch box from the total cost, because we don't need to find the value of the lunch box. So:
105 - 8 = 97
So, now since he bought 7 forks, we need to divide 7 by 97. So:
97 / 7 = 13.857142857142858
So, we need to round to the nearest cent. So, the 7 is greater than 5, so we round up. So, we have $13.86 each. So, check, we do:
13.86(7) + 8
97.02 + 8
= 105.02
This is the closest he can buy for each fork is ABOUT $13.86. I hope this helps ;)
Find the absolute value. What is 1/4
Answer:
0.25
Step-by-step explanation:
:)
Answer: the absolute value of 1/4 is 1
Step-by-step explanation:
A salesperson works 40 hours per week at a job where he has two options for being paid. Option A is an hourly wage of 18$. Option B is a commission rate of 8% on weekly sales. How much does he need to sell this week to earn the same amount with the two options?
Answer:
$9000
Step-by-step explanation:
First find how much is made in a week by option A
40*18=720
In order to match this the salesperson must make $720 from 8% commissions. Divide 720 by 0.08 to get the necessary sales for $720 from commissions.
720/0.08=9000
Final answer is 9000 in sales.
HELP WILL MARK BRAINLIEST!!!!!!
Answer:
1. NP
2. P
3. P
4. NP
Step-by-step explanation:
if this helped, Mark as brainliest, thank you
Answer:
Not polynomial for the first one.
second is polynomial.
third is polynomial.
and fourth is not polynomial.
Step-by-step explanation:
oh wait- yeah the other person is right too LOL
The figure shows a flagpole and its shadow. The shadow has a length of 43 feet and the sun's rays make an angle of 30° with the ground.
What is the approximate height, x, of the flagpole?
A.
28 feet
B.
25 feet
C.
22 feet
D.
37 feet
Answer:
B, 25 ft
Step-by-step explanation:
This can be modeled as a triangle. Let x be the height of the flagpole. From the picture, we can see that tan30 = x/43. x = 43tan30 = 25 ft.
The approximate height of the flagpole is 24.83 feet.
What is a trigonometric function?The fundamental 6 functions of trigonometry have a range of numbers as their result and a domain input value that is the angle of a right triangle.
Given the flagpole and its shadow is making an right-angle triangle.
By trigonometric function tan
Tan30° = Height of pole / 43
3.40 = Height of pole / 43
Height of pole = 3.40 × 43
⇒ 24.83 feet.
Hence "The length of the flagpole based on tan function is 24.83 feet".
For more information about the trigonometric function,
https://brainly.com/question/14746686
#SPJ2
Given question is missing figure attached below;
We an equivalent agression for 40+8(n-3)
Answer:
8n+16
Explanation:
Given the expressions:
\(40+8\left(n-3\right)\)First, distribute 8 over the terms in the bracket:
\(\begin{gathered} =40+8(n)+8(-3) \\ =40+8n-24 \end{gathered}\)Finally, collect like terms and simplify:
\(\begin{gathered} =40-24+8n \\ =16+8n \end{gathered}\)An equivalent expression is 8n+16.
if the volume of a ball is 32,490 cubic millimeters, what is the volume of the ball in cubic centimeters?
The volume of ball is 32.49 cubic centimeter.
What is volume ?
Every three-dimensional item takes up space in some way. The volume of this area is what is used to describe it. The area occupied within an object's three-dimensional bounds is referred to as its volume. The object's capacity is another name for it.
Here ,
The volume of a ball = 32490 cubic millimeters
To convert into cubic millimeter into cubic centimeter by dividing by 1000, Then,
=> 32490/1000
=> 32.49 cubic centimeter.
Hence the volume of ball in cubic centimeter is 32.49 .
To learn more about volume
https://brainly.com/question/14197390
#SPJ4
find cube root of 175616 ??
i will mark u as brainlist if u would give a correct answer with Explanation
Answer:
56
Step-by-step explanation:
Cube root of 175616 by prime factorization method is 56
Solution:
To find cube root of 175616 by prime factorization method
A number that must be multiplied by itself three times to equal a given number is called cube root
Prime factorization method:
Prime factorization is a number written as the product of all its prime factors.
In order of finding cube root by prime factorization we use the following steps:
Step I : Obtain the given number
Step II : Resolve it into prime factors.
Step III : Group the factors in 3 in such a way that each number of the group is same
Step IV : Take one factor from each group
Step V : Find the product of the factors obtained in step IV. This product is the required cube root
Prime factorization of 175616:
\text{ prime factors of 175616 } = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 7 \times 7 \times 7 prime factors of 175616 =2×2×2×2×2×2×2×2×2×7×7×7
Thus we get,
\sqrt[3]{175616} = \sqrt[3]{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 7 \times 7 \times 7}
3
175616
=
3
2×2×2×2×2×2×2×2×2×7×7×7
Make the groups of 3 of equal numbers
\sqrt[3]{175616} = \sqrt[3]{2 \times 2 \times 2} \times \sqrt[3]{2 \times 2 \times 2 \times } \times \sqrt[3]{2 \times 2 \times 2} \times \sqrt[3]{7 \times 7 \times 7}
3
175616
=
3
2×2×2
×
3
2×2×2×
×
3
2×2×2
×
3
7×7×7
So there are 4 equal groups. So from that group take one factor out
\sqrt[3]{175616} = 2 \times 2 \times 2 \times 7 = 56
3
175616
=2×2×2×7=56
Thus Cube root of 175616 by prime factorization method is 56
please mark me as a brainlist
Find the sum of the series. 4+16/2!+64/3!+⋯ 1−ln2+(ln2)2/2!−(ln2)3/3!+⋯
The sum of the series 4 + 16/2! + 64/3! + ... is 8e^4 - 4.
The given series is a geometric series with the common ratio of 4. The general term of the series can be written as (4^n)/(n!), where n starts from 0.
To find the sum of the series, we can use the formula for the sum of an infinite geometric series:
S = a / (1 - r),
where S is the sum of the series, a is the first term, and r is the common ratio.
In this case, a = 4 and r = 4. Substituting these values into the formula, we have:
S = 4 / (1 - 4) = -4/3.
Therefore, the sum of the series 4 + 16/2! + 64/3! + ... is -4/3.
Similarly, for the series 1 - ln(2) + (ln(2))^2/2! - (ln(2))^3/3! + ..., it is an alternating series with the terms alternating in sign. This series can be recognized as the Maclaurin series expansion of the function e^x, where x = ln(2). The sum of this series is e^x = e^(ln(2)) = 2.
Therefore, the sum of the series 1 - ln(2) + (ln(2))^2/2! - (ln(2))^3/3! + ... is 2.
To learn more about geometric series click here
brainly.com/question/12987084
#SPJ11
In a four bar chain ABCD, AD is fixed and is 150 mm long. The crank AB is 40 mm long and rotates at 120 r.p.m. clockwise, while the link CD = 80 mm oscillates about D. BC and AD are of equal length. Find the angular velocity of link CD when angle BAD = 60°.
The angular velocity of link CD when angle BAD = 60° is 21.16 rad/s.
The given values are:
AD = 150 mm
AB = 40 mm
CD = 80 mm
The crank AB rotates at 120 r.p.m. clockwise.
BC and AD are of equal length.
To find:
The angular velocity of link CD when angle BAD = 60°.
From the given data, we have to first find the value of angle BCD.
Angle BCD can be calculated as follows:
AB = 40 mm
BC = AD
= 150 mm
In ΔABC,
By using Cosine rule;
AC² = AB² + BC² - 2 × AB × BC × Cos ∠ABC∴ AC² = (40)² + (150)² - 2 × 40 × 150 × Cos 180°
∴ AC = 160.6 mm
In ΔBCD,
By using Cosine rule;
BD² = BC² + CD² - 2 × BC × CD × Cos ∠BCD
∴ BD² = (150)² + (80)² - 2 × 150 × 80 × Cos ∠BCD
In ΔABD,By using Cosine rule;
BD² = AB² + AD² - 2 × AB × AD × Cos ∠BAD
∴ BD² = (40)² + (150)² - 2 × 40 × 150 × Cos 60°
∴ BD = 184.06 mm
In ΔABD,By using Sine rule;
AB / Sin ∠BAD = BD / Sin ∠ABD
∴ Sin ∠ABD = BD × Sin ∠BAD / AB
∴ ∠ABD = Sin⁻¹ [BD × Sin ∠BAD / AB]
∴ ∠ABD = Sin⁻¹ [184.06 × Sin 60° / 40]
∴ ∠ABD = 87.2°∠ACD = ∠ABD - ∠ACB
∴ ∠ACD = 87.2° - 180°
∴ ∠ACD = - 92.8°∠BCD
= 180° - ∠ACD
∴ ∠BCD = 180° - (- 92.8°)
∴ ∠BCD = 272.8°
As we know that for four-bar mechanism, we have a formula for finding the angular velocity of link CD.
ωCD / Sin ∠BCD = ωAB / Sin ∠BADωCD / Sin 272.8°
= ωAB / Sin 60°
Substituting the values, ωCD / Sin 272.8° = ωAB / Sin 60°ωCD
= ωAB × Sin 272.8° / Sin 60°
But, ωAB = 2 × π × N / 60
= 2 × π × 120 / 60
= 4 × π rad/s
∴ ωCD = 4 × π × Sin 272.8° / Sin 60°ωCD
= 21.16 rad/s
Therefore, the angular velocity of link CD when angle BAD = 60° is 21.16 rad/s.
To know more about clockwise visit:
https://brainly.com/question/30960490
#SPJ11
4x + 5 = 18 can y'all solve x
Answer:
x=13/4
Step-by-step explanation:
4x+5=18....collect like terms
4x=18-5
4x=13
x=13/4 or 3.25
What is 1 3/4 x 2 2/3?
A. 2 1/2
B. 3 5/12
C. 4 2 / 3
D. 4 6 /7
Answer:
4 2/3
Step-by-step explanation:
1 3/4 x 2 2/3
We need to change the mixed numbers to improper fractions
1 3/4 = ( 4*1+3) /4 = 7/4
2 2/3 = ( 3*2 +2) /3 = 8/3
7/4 * 8/3
Rewriting
7/3 * 8/4
Simplify
7/3 *2
14/3
Make this a mixed number
4 goes into 14 4 times with 2 left over
4 2/3
Answer:
\(4\frac{2}{3}\)
Step-by-step explanation:
\(1\frac{3}{4} *2\frac{2}{3}\)
First, make fractions as improper fractions.
\(\frac{7}{4} *\frac{8}{3}\)
Now multiply the answers.
\(\frac{56}{12}\)
Now make the answer a mixed number.
\(4\frac{8}{12}\)
To write the answer in its simplest form, divide the numerator and denominator by 4.
\(4\frac{2}{3}\)
You are required to: a.Rewrite the formulation above in the standard form by adding the required variables to replace the inequalities. b.Find a solution for the above formulation utilizing the linear programming simplex method.
Using the simplex method, the optimal solution for the given linear programming problem is x = 2, y = 2, z = 0, with the maximum objective value of P = 10.
a. To rewrite the formulation in standard form, we need to replace the inequalities with equality constraints and introduce non-negative variables. Let's assume x, y, and z as the non-negative variables:
Maximize P = 3x + 2y + 4z
Subject to:2x + y + z + s1 = 8
x + 2y + 3z + s2 = 10
x, y, z ≥ 0
b. Utilizing the linear programming simplex method, we can solve the above formulation. After setting up the initial tableau, we perform iterations by selecting a pivot element and applying the simplex algorithm until an optimal solution is reached. The algorithm involves row operations to pivot the tableau until all coefficients in the objective row are non-negative. This ensures the optimality condition is satisfied, and the maximum value of P is obtained.
To provide a brief solution within 120 words, we determine the optimal solution by applying the simplex method to the above formulation. After performing the necessary iterations, we find that the maximum value of P occurs when x = 2, y = 2, z = 0, with P = 10. Therefore, the maximum value of P is 10, and the solution for the given problem is x = 2, y = 2, and z = 0.
To learn more about simplex method click here
brainly.com/question/32298193
#SPJ11
Translate “The sum of two consecutive odd integers” into an algebraic expression.
Answer: x + (x+2)
Step-by-step explanation:
Hi Abby,
Let
x = the smaller of the two consecutive odd numbers
then
x+2 = the 2nd of the two consecutive odd numbers
The sum of these two consecutive odd numbers would be
x + (x+2)
I need help asap I'm giving the rest of my points
Answer:
a. 32. 3
Step-by-step explanation:
4x3=12
1×3=3 (3 min missing from table)
32×3=96 (32 songs miss)
What is the value of 0.2
Answer:
value of 0.2 in fraction is 1/5
When or how do you use them to solve for the answer
Answer:
a) Δt = vf - vi ÷ a
b) (a × Δt) + vi = vf
this is a question of algebraic expressions
Answer:
p = 2a + 2b
Step-by-step explanation:
The perimeter p is the sum of the 4 sides , then
p = a + a + b + b = 2a + 2b
The systolic blood pressure (given in millimeters) of males has an approximately normal distribution with mean �
=
125
μ=125 and standard deviation �
=
14.
σ=14. Systolic blood pressure for males follows a normal distribution. a. Calculate the z-scores for the male systolic blood pressures 100 and 150 millimeters. b. If a male friend of yours said he thought his systolic blood pressure was 2.5 standard deviations below the mean, but that he believed his blood pressure was between 100 and 150 millimeters, what would you say to him?
(a) The z-scores for male systolic blood pressures of 100 and 150 millimeters can be calculated using the formula z = (x - μ) / σ.
(b) There is a discrepancy between your friend's claim of being 2.5 standard deviations below the mean and his belief that his blood pressure falls between 100 and 150 millimeters.
(a) To calculate the z-scores for male systolic blood pressures of 100 and 150 millimeters, we use the formula z = (x - μ) / σ, where x is the individual value, μ is the mean (125 millimeters), and σ is the standard deviation (14 millimeters). For 100 millimeters, the z-score would be (100 - 125) / 14 = -1.79, and for 150 millimeters, the z-score would be (150 - 125) / 14 = 1.79. These z-scores indicate how many standard deviations away from the mean each value is.
(b) If a male friend claimed his systolic blood pressure was 2.5 standard deviations below the mean, but he believed it was between 100 and 150 millimeters, there is a discrepancy. A z-score of -2.5 would correspond to a blood pressure value below 100 millimeters, not within the given range.
It is important to communicate to your friend that his statement contradicts the belief of his blood pressure falling between 100 and 150 millimeters.
z-scores, normal distribution, and statistical inference to gain a deeper understanding of how to interpret and analyze data based on their deviations from the mean.
Learn more about systolic blood pressures
brainly.com/question/15205142
#SPJ11
How do you calculate sales tax for an item?
Step-by-step explanation:
Multiply the cost of an item or service by the sales tax in order to find out the total cost. The equation looks like this: Item or service cost x sales tax (in decimal form) = total sales tax. Add the total sales tax to the Item or service cost to get your total cost.
Answer:
sup\
Step-by-step explanation:
Please help I really need it
Kelly's brothers age after 4 2/3 is 23 12/24 years.
What is Fraction?
An element of a whole is a fraction. The number is represented mathematically as a quotient, where the numerator and denominator are split. Both are integers in a simple fraction. A fraction appears in the numerator or denominator of a complex fraction. The numerator of a proper fraction is less than the denominator.
What is mixed fraction?
A mixed fraction is one that is represented by both its quotient and remainder. A mixed fraction is, for instance, 2 1/3, where 2 is the quotient and 1 is the remainder. An amalgam of a whole number and a legal fraction is a mixed fraction.
We have ;
Kelly's Brother is 18 7/8 year old.
We have to calculate;
His age after 4 2/3 years.
So,
⇒ 18 7/8 + 4 2/3
⇒ 151/8 + 14/3
⇒151 x 3 + 14 x 8/24
⇒453 + 112 /24
⇒565/24
⇒23 13/24 year old
Hence , his age after 4 2/3 is 23 13/24 years.
Learn more about Fraction click here:
https://brainly.com/question/1713644
#SPJ1
In class, we discussed the four-color theorem, that any planar graph can be colored with at most four colors so that no two adjacent vertices share the same color. But, not every planar graph needs all four colors. a. What is the minimum number of colors needed for the cycle graphs C3, C4, C5, and C6? b. What pattern do you see? What do you think is the minimum number of colors needed for an arbitrary cycle graph, C₁? Your answer should depend on if n is odd or even.
The required answers obtained by using four-color theorem are:
a. The minimum number of colors needed for the cycle graphs C3, C4, C5, and C6 is 3 colors.
b. The pattern observed is that for cycle graphs with an odd number of vertices, the minimum number of colors needed is 3, while for cycle graphs with an even number of vertices, the minimum number of colors needed is 2.
c. For an arbitrary cycle graph, C₁, the minimum number of colors needed depends on whether the number of vertices, n, is odd or even. If n is odd, 3 colors are required, and if n is even, 2 colors are sufficient.
For the cycle graph C3 (a triangle), we can color each vertex with a different color, and no two adjacent vertices share the same color. Hence, we need a minimum of 3 colors.
For the cycle graph C4 (a square), we can also color each vertex with a different color, ensuring that adjacent vertices have different colors. Again, we need a minimum of 3 colors.
For the cycle graph C5 (a pentagon), we cannot color all vertices with unique colors, as it would result in two adjacent vertices sharing the same color. However, we can color three vertices with one color and the remaining two vertices with a different color. Therefore, we still need a minimum of 3 colors.
For the cycle graph C6 (a hexagon), we can observe that it is isomorphic to C3. Thus, we can apply the same coloring scheme used for C3, using 3 colors.
b. The pattern we observe from the given cycle graphs is that the minimum number of colors needed for a cycle graph depends on whether the number of vertices, n, is odd or even.
If n is odd, then the minimum number of colors needed for an arbitrary cycle graph, C₁, is 3 colors. We can use a similar coloring scheme as we did for C5, where we color (n-1)/2 vertices with one color and the remaining (n+1)/2 vertices with a different color. This ensures that no two adjacent vertices share the same color.
If n is even, then the minimum number of colors needed for an arbitrary cycle graph, C₁, is 2 colors. We can simply alternate between two colors along the cycle, ensuring that no adjacent vertices have the same color.
To summarize, the minimum number of colors needed for an arbitrary cycle graph, C₁, depends on whether the number of vertices, n, is odd or even. For odd values of n, we need 3 colors, while for even values of n, we need 2 colors.
Therefore, the required answers obtained by using four-color theorem are:
a. The minimum number of colors needed for the cycle graphs C3, C4, C5, and C6 is 3 colors.
b. The pattern observed is that for cycle graphs with an odd number of vertices, the minimum number of colors needed is 3, while for cycle graphs with an even number of vertices, the minimum number of colors needed is 2.
c. For an arbitrary cycle graph, C₁, the minimum number of colors needed depends on whether the number of vertices, n, is odd or even. If n is odd, 3 colors are required, and if n is even, 2 colors are sufficient.
Learn more about the four-color theorem here: https://brainly.com/question/30139883
#SPJ4
who got forza horizon 3 on xbox one
Answer: me but I cant play with anyone
Step-by-step explanation:
Which equation would you use to solve the following situation?
If everybody on the team scores 6 points, and the team has a total of 42 points, how many people are on the team?
Answer:
6p = 42
Step-by-step explanation:
If everybody scores 6 then the possible equation could be 6p = 42.
p represents the people on the team.
Solve for the variable p:
6p = 42
6p/6 = 42/6
p = 7
There are 7 people on the team.
hope this helps and is right!! p.s. i really need brainliest :)
64.89% of 407.68cm
Give your answer rounded to 2dp
Answer: 264.54cm
Step-by-step explanation:
407.68x0.6489=264.543552264.543552 rounded to 2 decimal points is 264.54
I need help , Solve and graph each inequality
how do I Find the other endpoint when the midpoint is (-2,-4) and one endpoint is (0.4).
Given,
The midpoint is, ( -2, -4)
The one end point is, ( 0, 4)
The midpoint between tw
WILL GIVE BRAINLIEST. The data give the average number of days in May that are clear and cloudy in two cities.
Answer:57
Step-by-step explanation:
Answer:
B) 0.57
Step-by-step explanation:
It says "given that you are in Sacramento", so hint: only look at the Sacramento row. Ignore everything else, you don't need it.
Then it asks what is the probability of a clear day, so you look at the "Clear" column from the Sacramento row. That would be 17 days.
Lastly, you just simply divide from the total days. 17/30 = 0.57
Evaluate the line integral, where C is the given curve.∫C xyds, C:x = t^2,y = 2t, 0 ≤ t ≤ 3
On solving the provided question, we can say that integral = \(\int\limits^a_b \,\)t√9 + 16t² dt = \(\int\limits^a_b \,\)√9 + 16t² d (9 + 16t²)
what is integral?In mathematics, integrals translate integers into functions that express concepts like displacement, area, and volume that result from the combination of little facts. Integral discovery is a process that is referred to as integration. Integrals are mathematical constructs that, in calculus, have the same meaning as areas or generalized versions of areas. The main goal of calculus is to work with derivatives and integrals. Primitives and inverse derivatives are other terms for integral. Integration is essentially utilized to determine the area of 2D space and determine the volume of 3D objects. As a result, calculating an integral of a function with respect to x entails calculating the area between the curve and the x-axis.
integral
Curves, x = t³ or,
= 3t²
y = t⁴ or,
= 4t³
Now, the line integral along C will be:
→ = \(\int\limits^a_b \,\)√(3t²)² + (4t³)² dt
= \(\int\limits^a_b \,\)√9t⁴ + 16t⁶ dt
= \(\int\limits^a_b \,\)√9 + 16t² dt
= \(\int\limits^a_b \,\)√9 + 16t² dt
= \(\int\limits^a_b \,\)t√9 + 16t² dt
= \(\int\limits^a_b \,\)√9 + 16t² d (9 + 16t²)
To know more about integral visit:
https://brainly.com/question/18125359
#SPJ4