Prefix notation, infix notation, and postfix notation are three different ways to represent mathematical expressions.
They differ in the placement of operators and operands within the expression.
1. Prefix Notation (also known as Polish Notation):
In prefix notation, the operator is placed before its operands. It does not require the use of parentheses to indicate the order of operations. Here's an example:
Expression: + 5 3
Explanation: In prefix notation, the addition operator '+' is placed before its operands '5' and '3'. The expression evaluates to 8.
2. Infix Notation:
In infix notation, the operator is placed between its operands. It is the most commonly used notation in mathematics and is familiar to most people. Parentheses are used to indicate the order of operations. Here's an example:
Expression: 5 + 3
Explanation: In infix notation, the addition operator '+' is placed between the operands '5' and '3'. The expression evaluates to 8.
3. Postfix Notation (also known as Reverse Polish Notation):
In postfix notation, the operator is placed after its operands. Similar to prefix notation, postfix notation does not require the use of parentheses to indicate the order of operations. Here's an example:
Expression: 5 3 +
Explanation: In postfix notation, the addition operator '+' is placed after the operands '5' and '3'. The expression evaluates to 8.
To evaluate expressions in prefix, infix, or postfix notation, different algorithms or parsing techniques are used. For example, to evaluate postfix expressions, a stack-based algorithm known as the postfix evaluation algorithm can be applied.
Learn more about Reverse Polish Notation:
https://brainly.com/question/31489210
#SPJ4
find the average value of 1/r^2 over the annulus {(r,theta): 4≤r≤6}
The average value of \($\frac{1}{r^2}$\) over the annulus \($\{(r,\theta): 4 \leq r \leq 6\}$\).
Given an annulus\($\{(r,\theta): 4 \leq r \leq 6\}$\) we need to find the average value of\($\frac{1}{r^2}$\) over this region. Using the formula for the average value of a function f(x,y) over a region R, we get:
The average value of f(x,y) over the region R is given by: \($\frac{\int_R f(x,y) \,dA}{A(R)}$\)
Here, dA represents the area element and A(R) represents the area of the region R. So, we have: \($f(r,\theta) = \frac{1}{r^2}$\).
We know that \($4 \leq r \leq 6$\) and \($0 \leq \theta \leq 2\pi$\). Therefore, the area of the annulus is given by:\($A = \pi(6^2 - 4^2) = 32\pi$\)
Now, we need to find \($\int_R \frac{1}{r^2} \,dA$\). We know that \($dA = r \,dr \,d\theta$\). Therefore, \($\int_R \frac{1}{r^2} \,dA = \int_0^{2\pi} \int_4^6 \frac{1}{r^2} r \,dr \,d\theta$\)
Simplifying, we get: \($\int_R \frac{1}{r^2} \,dA = \int_0^{2\pi} \left[\ln(r)\right]_4^6 \,d\theta$\). Using the property of logarithms, we have: \($\int_R \frac{1}{r^2} \,dA = \int_0^{2\pi} \ln(6) - \ln(4) \,d\theta$\).
Evaluating the integral, we get: \($\int_R \frac{1}{r^2} \,dA = 2\pi \ln\left(\frac{3}{2}\right)$\).
Now, the average value of \($\frac{1}{r^2}$\) over the annulus is given by:
\($\text{average} = \frac{\int_R \frac{1}{r^2} \,dA}{A}$\).
Substituting the values, we get:.
Simplifying, we get: \($\text{average} = \frac{\ln\left(\frac{3}{2}\right)}{16}$\).
Therefore, the average value of\($\frac{1}{r^2}$\) over the annulus \($\{(r,\theta): 4 \leq r \leq 6\}$\) is \($\frac{\ln\left(\frac{3}{2}\right)}{16}$\).
Thus, we have found the average value o f\($\frac{1}{r^2}$\) over the annulus \($\{(r,\theta): 4 \leq r \leq 6\}$\).
To know more about average value, click here
https://brainly.com/question/28123159
#SPJ11
lara is calculating the standard deviation of a data set that has 8 values. she determines that the sum of the squared deviations is 184. what is the standard deviation of the data set?
Therefore, the standard deviation of the data set is approximately 7.89.
The formula for the sample standard deviation of a data set is:
s = √(Sum of squared deviations / (n - 1))
where n is the sample size.
In this case, the sum of the squared deviations is given as 184, and the sample size is 8. Therefore, we can calculate the standard deviation as:
s = √(184 / (8 - 1))
= √(184 / 7)
= 7.89 (rounded to two decimal places)
To know more about data set,
https://brainly.com/question/22210584
#SPJ11
Write the equation of this line in point-slope form using the point (1,-3) .
a. y + 1 = (-1/2)(x + 3)
b. y + 1 = (1/2)(x + 3)
c. y + 3 = (1/2)(x - 1)
d. y - 3 = (-1/2)(x - 1)
Answer:
c. y + 3 = (1/2)(x - 1)
Step-by-step explanation:
Answer:
A. \(y + 1 = (-\frac{1}{2})(x + 3)\)
Step-by-step explanation:
I used a graphing calculator. I prefer Desmos, but you can use whatever you like. I recommend Desmos or GeoGebra.
Please mark as Brainliest!!!What is C L in Roman numerals?
Answer:
150
Step-by-step explanation:
It's very simple
C=100
L=50
CL=150
Answer:
150
Step-by-step explanation:
There are seven symbols that are used in the Roman Numeral system.
your colleague has built a model to show how the weather has an impact on daily sales of ice cream in your shop. the variable that tells you what the weather was like, is known as what?
Answer:
Independent variable. cause the sales will be depending upon the weather.
Step-by-step explanation:
3 ways to make whole 2.8
Step-by-step explanation:
please mark me as brainlist please
Answer:
2.8 as a whole is 2 4/5. Take out the fraction, 4/5.2.8 can also be 28/10 which is the improper number of 2 8/10.2.8 can also be simplified to 1.4, 1.4 is 1 2/5.please consider brainliest
Alexis was given the data in the table below. She will use her calculator to find a model to predict the locations of other points that follow the same trend.
X
40
32
38
21
у
10
8
10
5
Based on the table, which is the best model for making this prediction?
O y= 1.04x - 2.29
O y = 2.29x -1.04
O y = 0.28x -0.77
O y = 77x + 28
Answer:
y = 0.28X - 0.77
Step-by-step explanation:
Given the data :
X:
40
32
38
21
у:
10
8
10
5
Equation of regression line is in the form:
y = mx + c
Where y = predicted variable ;
c = intercept ; m = slope or gradient ; x = predictor variable
Using The correlation Coefficient calculator :
The regression equation obtained is :
ŷ = 0.2754X - 0.77028
Rounding values in our regression output to 2 decimal places :
y = 0.28X - 0.77
Hence best model to make prediction :
y = 0.28X - 0.77
Find the first and second derivatives. 5 y = - 4x® - 9 11
We are given a function y = -4x^3 - 9x^11, and we need to find its first and second derivatives.
To find the first derivative, we apply the power rule and the constant multiple rule. The power rule states that the derivative of x^n is nx^(n-1), and the constant multiple rule states that the derivative of kf(x) is k*f'(x), where k is a constant. Applying these rules, we can find the first derivative of y = -4x^3 - 9x^11.
Taking the derivative term by term, the first derivative of -4x^3 is -43x^(3-1) = -12x^2, and the first derivative of -9x^11 is -911x^(11-1) = -99x^10. So, the first derivative of y is dy/dx = -12x^2 - 99x^10.
To find the second derivative, we apply the same rules to the first derivative. Taking the derivative of -12x^2, we get -122x^(2-1) = -24x, and the derivative of -99x^10 is -9910x^(10-1) = -990x^9. Therefore, the second derivative of y is d^2y/dx^2 = -24x - 990x^9.
To know more about derivatives click here: brainly.com/question/25324584
#SPJ11
pls
neat handwriting
Find the area bounded by the graphs of the indicated equations over the given interval. Computer answers to three decimal places y - 6x-8;y 0 - 15x2 The area, calculated to three decimat pinces, in sq
The area bounded by the graphs of the equations \($y = 6x - 8$\) and \($y = 15x^2$\) over the interval \($0 \leq x \leq 15$\) is approximately 680.625 square units.
To find the area, we need to determine the points of intersection between the two curves. We set the two equations equal to each other and solve for x:
\(\[6x - 8 = 15x^2\]\)
This is a quadratic equation, so we rearrange it into standard form:
\(\[15x^2 - 6x + 8 = 0\]\)
We can solve this quadratic equation using the quadratic formula:
\(\[x = \frac{{-(-6) \pm \sqrt{{(-6)^2 - 4 \cdot 15 \cdot 8}}}}{{2 \cdot 15}}\]\)
Simplifying the equation gives us:
\(\[x = \frac{{6 \pm \sqrt{{36 - 480}}}}{{30}}\]\)
Since the discriminant is negative, there are no real solutions for x, which means the two curves do not intersect over the given interval. Therefore, the area bounded by the graphs is equal to zero.
To learn more about area refer:
https://brainly.com/question/25092270
#SPJ11
let q(x,y) be the statement "x y=x-y." if the domain for both variables consists of all integers, what are the truth values?
The given statement is q(x, y) = "x + y = x - y."If the domain of both variables consists of all integers, then what are the truth values?
Solution: The given statement is q(x, y) = "x + y = x - y."
So, substituting the values from the domain of integers,x = 2 and y = 4, then q(2,4) = 2+4 = 2-4 = -2,
which is false.x = 5 and y = 3, then q(5,3) = 5+3 = 5-3 = 2,
which is true.x = 0 and y = 0, then q(0,0) = 0+0 = 0-0 = 0,
which is true.x = -3 and y = -2, then q(-3,-2) = (-3)+(-2) = (-3)-(-2) = -1,
which is false.
Hence, the truth values for the given statement q(x, y) = "x + y = x - y" with integers domain are:
True, True, True, False.
The truth values are {T,T,T,F}.
Therefore, the correct option is (b)
To know more about integers visit:
https://brainly.com/question/929808
#SPJ11
I'M IN THE MIDDLE OF A TEST HELP ASPS PLZ...Translate this phrase into an algebraic expression. The sum of 12 and twice Vanessa's height Use the variable v to represent Vanessa's height.
Answer:
The answer would be 12+2v or vice versa
Step-by-step explanation:
Hoped that helped
The lines intersect at
1 point.
different. The
parallel.
Do You Understand?
1. Essential Question How are slopes and
y-intercepts related to the number of solutions
of a system of linear equations?
The slopes and y-intercepts can be used to determine the type of relationship between the lines, and therefore the number of solutions.
What is linear equation ?
Linear equation can be defined as the equation in which the highest degree is one.
The number of solutions for a system of linear equations depends on the relationship between the slopes and y-intercepts of the lines represented by the equations. If the lines are intersecting, then there is exactly one solution where the lines cross. If the lines are parallel, then there are no solutions, as the lines will never intersect.
If the lines are coincident, then there are infinitely many solutions, as the lines represent the same line.
Therefore, The slopes and y-intercepts can be used to determine the type of relationship between the lines, and therefore the number of solutions.
To learn more about Linear equation from given link.
https://brainly.com/question/29739212
#SPJ1
how do u do 2 over 3 =A over 60 PLZ NO LINKS THANKS
Hey there!
2/3 = a/30
First: you have to CROSS MULTIPLY the given numbers
2(30) = 3(a)
2(30) = 60
3(a) = 3a
New EQUATION: 3a = 60
Second: DIVIDE 3 to BOTH SIDES
3a/3 = 60/3
CANCEL out: 3/3 because that gives you 1
KEEP: 60/3 because that helps you solve for your a-value
60/3 = a
60/3 = 20
Therefore, your answer is: a = 20
Good luck on your assignment and enjoy your day!
~Amphitrite1040:)
Phillip and his two friends need to raise at least $2,400 for their study abroad trip to Europe. So far, they have raised $600. Write an inequality to represent x, the amount of money they need to raise after the first week. Explain your answer.
Answer:
x + 600 ≥ 2400
Step-by-step explanation:
Given:
Amount needed = $2,400
Amount they had = $600
Find:
Amount they need
Computation:
Assume;
Amount they need = x
x + 600 ≥ 2400
A school ordered 3 large boxes of board markers. After giving 15 markers to each of 3 teachers, there were 90 markers left. How many markers were originally in the box?
find nonzero 2x2 matrices a and b such that ab=0
It is worth noting that there are many other possible choices for a and b that satisfy ab=0. This is because there are many ways to construct matrices with a row or column of zeros, and many ways to choose the nonzero entries in the other positions.
To find nonzero 2x2 matrices a and b such that ab=0, we need to find matrices a and b whose product is the zero matrix. A matrix multiplication is a combination of dot products between rows and columns of the two matrices. In order for the product of two matrices to be zero, one or both of the matrices must have a row of zeros or a column of zeros.
One way to construct such matrices is to set one of the matrices to have a row of zeros and the other to have a column of zeros. Let a be a matrix with a row of zeros and b be a matrix with a column of zeros, but with a nonzero entry in a different position. For example, we could choose:
a = [0 0; 1 0]
b = [0 1; 0 0]
Then, the product ab is:
ab = [0 0; 1 0] * [0 1; 0 0] = [0 0; 0 0]
So, we have found two nonzero 2x2 matrices a and b such that ab=0.
It is worth noting that there are many other possible choices for a and b that satisfy ab=0. This is because there are many ways to construct matrices with a row or column of zeros, and many ways to choose the nonzero entries in the other positions.
Learn more about nonzero here:
https://brainly.com/question/31142819
#SPJ11
differentiate between the Markov analysis and replacement chart and when it is appropriate to use either approach?
Markov analysis is used for analyzing the performance and reliability of complex systems, while replacement charts are used for optimizing the replacement timing of deteriorating assets.
Markov Analysis:
Markov analysis is a probabilistic model that is used to predict the future state of a system based on its current state.
It involves the use of Markov chains to model the transitions between different states of a system over time.
Markov analysis is commonly used when the equipment or system under consideration can be in multiple states with varying probabilities of transition.
It is suitable for analyzing systems that have a continuous or non-repairable nature, such as complex machinery, infrastructure, or systems with multiple failure modes.
The primary objective of Markov analysis is to assess the reliability, availability, and performance of the system and make decisions regarding maintenance, replacement, or repair strategies.
Replacement Chart:
A replacement chart, also known as a replacement model or replacement policy, is a decision-making tool used to determine the optimal time to replace a piece of equipment or system.
It involves comparing the costs associated with continuing to use the existing equipment (including maintenance and repair costs) with the costs of replacing it.
The replacement chart provides a visual representation of the costs over time and helps identify the point at which replacement becomes more cost-effective than continued use.
Replacement charts are commonly used for assets that are subject to wear and tear, aging, or deterioration over time, such as vehicles, machinery, or equipment with a defined lifespan.
The primary objective of a replacement chart is to minimize costs associated with the asset's life cycle by optimizing the replacement timing.
Learn more about optimizing here:
https://brainly.com/question/29521416
#SPJ11
If vector v = ( 9 ) find -v and 3v
-6
The scale factor of two similar hexagons is 3:7. the area of the smaller hexagon is 18 m2. what is the area of the larger hexagon?
The area of the larger hexagon is 98 m² if the area of the smaller hexagon is 18 m² and the scale factor between them is 3:7.
When two polygons are similar, their corresponding sides are in proportion and their corresponding angles are equal. The scale factor between two similar polygons is the ratio of the lengths of corresponding sides. In this case, the scale factor of the two similar hexagons is 3:7, which means that each side of the larger hexagon is 7/3 times the length of the corresponding side of the smaller hexagon.
The area of a regular hexagon can be calculated using the formula A = \((3\sqrt{ 3}/2}) * s^2\), where s is the length of a side. Since the area of the smaller hexagon is given as 18 m², we can solve for the length of a side using the formula:
\(18 = (3\sqrt{ 3}/2}) * s^2\)
\(s = \sqrt{(12/\sqrt{3})} = 2\sqrt{3\)
Using the scale factor, we can find that the length of each side of the larger hexagon is \((7/3) * (2\sqrt{3}) = 14\sqrt{3 / 3\)
The area of the larger hexagon can then be calculated using the same formula as before, but using the length of a side of the larger hexagon:
A = \((3\sqrt{3}/2) * [(14\sqrt{3} / 3)^2] = 98 m^2\)
Therefore, the area of the larger hexagon is 98 m² if the area of the smaller hexagon is 18 m² and the scale factor between them is 3:7.
Learn more about hexagon here:
https://brainly.com/question/29762907
#SPJ4
At a certain community college, the time that is required by candidates to complete the general knowledge competency examination is normally distributed with a mean of 58.7 minutes and a standard deviation of 6 minutes.
Find the probability that a candidate takes between 56 minutes and 1 hour to complete the examination.
The probability that a candidate takes between 56 minutes and 1 hour to complete the examination is approximately 26.04%.
To find the probability that a candidate takes between 56 minutes and 1 hour (60 minutes) to complete the examination, we need to calculate the probability of the candidate's completion time falling within this range under the normal distribution.
Let X be the random variable representing the completion time of the examination. We know that X follows a normal distribution with a mean of 58.7 minutes and a standard deviation of 6 minutes.
To calculate the probability, we need to find the area under the normal curve between the values of 56 and 60. This can be done by standardizing the values using the z-score formula and then looking up the corresponding probabilities in the standard normal distribution table.
First, let's calculate the z-scores for 56 minutes and 60 minutes:
z1 = (56 - 58.7) / 6
z2 = (60 - 58.7) / 6
Using the z-score values, we can then find the corresponding probabilities from the standard normal distribution table.
P(56 < X < 60) = P(z1 < Z < z2)
By looking up the values of z1 and z2 in the standard normal distribution table, we can find the probabilities associated with these z-scores. Subtracting the probability corresponding to z1 from the probability corresponding to z2 gives us the probability between 56 and 60 minutes.
The final step is to convert this probability to a percentage by multiplying by 100.
Therefore, to find the probability that a candidate takes between 56 minutes and 1 hour to complete the examination, we would perform the calculations as described above to obtain the answer as a percentage.
To calculate the probability that a candidate takes between 56 minutes and 1 hour to complete the examination, we first need to standardize the values using the z-score formula.
z1 = (56 - 58.7) / 6 = -0.45
z2 = (60 - 58.7) / 6 = 0.217
Next, we need to look up the corresponding probabilities associated with these z-scores in the standard normal distribution table. From the table, we find:
P(Z < -0.45) = 0.3264
P(Z < 0.217) = 0.5868
To find the probability between these two values, we subtract the probability corresponding to z1 from the probability corresponding to z2:
P(-0.45 < Z < 0.217) = P(Z < 0.217) - P(Z < -0.45)
= 0.5868 - 0.3264
= 0.2604
Finally, we convert this probability to a percentage by multiplying by 100:
P(56 < X < 60) ≈ 0.2604 * 100 ≈ 26.04%
Therefore, the probability that a candidate takes between 56 minutes and 1 hour to complete the examination is approximately 26.04%.
Learn more about standard deviation here:
brainly.com/question/12402189
#SPJ11
If 15 actuators have failed today, what is the probability that a) at least 10 are repairable? b) from 3 to 8 are repairable? c) exactly 5 are repairable?
The probabilities of at least 10 are repairable is 1/3. and probabilities of from 3 to 8 are repairable is 1/5*8/15 and probabilities of exactly 5 are repairable is 1/3.
According to the statement
we have given that If 15 actuators have failed and we have to find the probabilities on some conditions.
we know that the formula of probabilities is
probability = possible outcomes / total outcomes
So,
at least 10 are repairable = 1 - (10 are not repairable)at least 10 are repairable = 1 - 10/15
at least 10 are repairable = (15 - 10)/15
at least 10 are repairable = (5)/15
at least 10 are repairable = 1/3
from 3 to 8 are repairable = 3/15 *8/15from 3 to 8 are repairable = 1/5 *8/15
exactly 5 are repairable = 5/15exactly 5 are repairable = 1/3
These are the probabilities of the given conditions.
So, The probabilities of at least 10 are repairable is 1/3. and probabilities of from 3 to 8 are repairable is 1/5*8/15 and probabilities of exactly 5 are repairable is 1/3.
Learn more about PROBABILITIES here https://brainly.com/question/25870256
#SPJ4
factorise m²-14m+49
Answer:
(m-7\()^{2}\)
Step-by-step explanation:
yo i need help whit how i got the answer plz help me
Answer:
The answer is B.
Step-by-step explanation:
Let us first set up an equation.
(3x - 7) + (2x + 3) = 90
5x - 4 = 90
5x = 94
x = 18.8
Hope this helps!
Please mark as brainliest.
Answer:
D m<A = 49.4 deg
Step-by-step explanation:
Since the lines are perpendicular, the sum of the measures of angles A and B is 90 deg.
m<A + m<B = 90
3x - 7 + 2x + 3 = 90
5x - 4 = 90
5x = 94
x = 18.8
m<A = 3x - 7 = 3(18.8) - 7 = 56.4 - 7 = 49.4
Answer: D m<A = 49.4 deg
What is the area of the figure below?
Answer:
3 x 3 = 9 + 3 x 3 = 9 which would be 18, then add 7 and 3 which would be 10 then multiply it by 5 which would be 50 then divided by 2 and you would get 25 add 25 two times which would be 50 once you do, you add the 18 which would be 68 in square.
Step-by-step explanation:
645.059 rounded to the nearest tenth
Answer:
645.1
Step-by-step explanation:
5 hundreths round up to 1 tenth
Question
For each possible purchase decision Georgia can make, what is the value of the assets and the associated fees?
Drag each tile to the correct location.
Purchase Decision
Value of Assets (5) Associated Foes (5)
Broker. ARC Investing purchase 700 shares
of stock A at a price of $10 per share
Broker ARC Investing purchase 1,000 shares
of stock B at a price of $15 per share
Broker: ATY Investing purchase 500 shares
of stock C at a price of $10 per share
$15,000
$7,000
$5,000
$43.50
$79.50
$35.00
Answer:
$7,000 / $43.50
$15,000 / $79.50
$5,000 / $35.00
The value of the assets and the associated fees Value of Assets: $15,000
$15,000,$5,000,Associated Fees: $43.50,$79.50,$35.00.
To correctly match the values with the purchase decisions, we need to associate the values with the respective transactions. Let's match the values with the purchase decisions:
Purchase Decision:
Broker ARC Investing purchase 700 shares of stock A at a price of $10 per share
Value of Assets: $15,000
Associated Fees: $43.50
Broker ARC Investing purchase 1,000 shares of stock B at a price of $15 per share
Value of Assets: $15,000
Associated Fees: $79.50
Broker ATY Investing purchase 500 shares of stock C at a price of $10 per share
Value of Assets: $5,000
Associated Fees: $35.00
To know more about value here
https://brainly.com/question/30145972
#SPJ2
A part of monthly hostel charges in a college hostel are fixed and the remaining depends on the number of days one has taken food in the mess. When a student A takes food for 25 days, he has to pay 4,500, whereas a student B who takes food for 30 days, has to pay 5,200. Find the fixed charges per month and the cost of food per day,
The fixed monthly charges are ₹ 1000, and the cost of food per day is ₹ 35.
Given that, Monthly hostel charges in a college hostel are fixed, and the remaining depends on how many days one has taken food in a mess.
Student A takes food for 25 days, he has to pay 4,500.
Student B, who takes food for 30 days, must pay 5,200.
To find :
Fixed charges per month.
Cost of food per day.
Let the fixed charges per month be ‘x’. Therefore, the cost of food per day be ‘y’.
According to the given information,
The total cost of the hostel for student A = Fixed charges + cost of food for 25 days
The total cost of the hostel for student B = Fixed charges + cost of food for 30 days
Mathematically,
The above expressions can be written as:
We get from the above equations, Subtracting (i) from (ii). Thus, we get
Fixed charges per month = ₹ 1000
Cost of food per day = ₹ 35
Therefore, we can say that the fixed monthly charges are ₹ 1000 and the cost of food per day is ₹ 35.
To know more about the fixed monthly charges, visit:
brainly.com/question/10962542
#SPJ11
An autonomous underwater vehicle (AUV) is at an elevation of -8.25 ft. It dives down 6 2/3 ft to collect a specimen. Then the AUV dives another 15 3/4 ft. What is the final elevation of the AUV? Show your work
The final elevation of the AUV is \(-31 \frac{5}{12}\) feet.
Given that, AUV is at an elevation of -8.25 ft. It dives down \(6\frac{2}{3}\) ft to collect a specimen. Then the AUV dives another \(15\frac{3}{4}\) ft.
What is an elevation?The angle of elevation in math is "the angle formed between the horizontal line and the line of sight when an observer looks upwards is known as an angle of elevation".
Here, the mixed fraction can be written in improper fraction
\(6\frac{2}{3} = \frac{20}{3}\) and \(15\frac{3}{4}=\frac{63}{4}\)
Now, 8.25 = 825/100 = 33/4
The final elevation = -33/4-20/3-63/4
= -99/4 - 20/3
= -297/12 -80/12
= - 377/12
= \(-31 \frac{5}{12}\)
Therefore, the final elevation of the AUV is \(-31 \frac{5}{12}\) feet.
To learn more about an elevation visit:
https://brainly.com/question/481548.
#SPJ1
What is the slope of a line that is perpendicular to the line y = –14 x – 1 ?
Answer:
m= 1/14
Step-by-step explanation:
If the slope is perpendicular, the rule say that it must be reciprocal (turned around) and with the opposite sign.
Therefore, if the original slope is -14/1.
It must be changed to positive, and swap numerator and denominator.
m2= 1/14
is a fraction a term? If it's not a term, why is it that we can apply the distributive property to it? the distributive property only works for either terms, or addition and subtraction. a fraction is technically division, so why does it work? Please help!!!!!
No, a fraction is not a term. The distributive property can be applied to fractions because it is a general mathematical principle.
A fraction is not considered a term in the traditional sense. It is a mathematical expression that represents division. However, the distributive property can still be applied to fractions because the property itself is a fundamental rule of arithmetic that extends beyond specific types of expressions.
The distributive property states that for any real numbers a, b, and c:
a × (b + c) = (a × b) + (a × c).
When working with fractions, we can apply the distributive property as follows:
Let's consider the expression: a × (b/c).
We can rewrite this as: (a × b)/c.
Now, let's distribute the 'a' to 'b' and 'c':
(a × b)/c = (a/c) × b.
In this step, we applied the distributive property to the fraction (a/c) by treating it as a whole.
Although fractions represent division, we can still use the distributive property because it is a general mathematical principle that allows for manipulating expressions involving addition, subtraction, multiplication, and division.
For more such question on fraction
https://brainly.com/question/17220365
#SPJ8